However, now the possibility is provided of giving the charge shape entirely in advance, i,e., the quantity

a s Then we will have the system of equations (15) and (16) to determine the constants Ajand ¢. The Initial
data of the charge should hence satisfy the condition Rez(£)> 0 for g<£ < 1.
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HURLING OF SHELLS BY HOLLOW
CHARGES

V. A, Odintsov, V. V, Selivanov, UDC 533.6.01.011
and S. S. Usovich

Results of the numerical solution of the problem of one-dimensional hurling of shells by hollow
explosive charges are elucidated, The results of the numerical solution are compared with as-
ymptotic formulas., Numerous domestic and foreign papers have been devoted to the gues-
tion of hurling shells by explosive charges. A numerical solution of the problem of convergence
of a ring to the center under the effect of detonation products is presented in [1-3]. The problem
of hurling a shell by a hollow explosive charge with an internal lining is considered in [4]; the
solution of the problem of hurling a shell by a hollow explosive charge without the cavity lining
is presented in [5] on the basis of the energy-balance equations; however, the complete picture
of the processes occurring in the detonation products is not considered.

A shell with a hollow explosive charge is shown in Fig. 1. The detonation products (DP) are initially a

gas at rest with the initial density p,=pBR and the pressure p;= pODz/ 8, whose extension is described by the
Landau ~ Stanyukovich polytropy p=ApX (k=3).

The governing parameters of the problem are the load coefficient 8 =m/M and the relative cavity radins

A =ap/a g where m is the mass of the high-explosive charge, M is the mass of the shell, a, is the radius of
the cavity in the high-explosive charge, and @, is the inner radius of the shell. The shell strength and com-

pressibility are neglected, The charge is in a vacuum,
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An r—t diagram of the process is presented in Fig, 1, Radial expansion of the shell and escape of the
gas within the cavity start at the time t=0.

After the rarefaction wave fronts meet at the point A,the whole gas is completely involved in the motion.
A shock forms gradually on the axis of symmetry for a high-speed spreading of the gas, which overtakes the
shell at the time tg and communicates an additional impulse to it. The line OYB is the shock-front trajectory.
The gas entropy increases with the origination of the shock and its reflections from the shell and from the axis
of symmetry; however, the increase inentropy isnegligible (AS~Ap3) in the case of reflection from the shell,
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TABLE 1

X 0,1
2

0.3 1.16 1.43 1.80 4,50
0.5 1.20 1.53 2.22 No pvertaking
0.8 1,2 1.98 4.3u No overtaking
TABLE 2
B
’0.1 0.0 1.0 it
Pokrovskii - Garni 0109 0,223 1289 0535
Y Stanyukovich 0110 0,232 0,306 0,386
D
Numerical solution 0.109 0.225 0,200 1357
TABLE 3
p
B 4 8 x
FE (.63 (.52 [ t.27
(*IHIX.
=00 2.04% 195 2,42 t 4%
pllliﬂ -
} _().8 4,15 2349 ] 1.67
TABLE 4
e [} 1Y 1,0 2.0
7 ’ | Tu B rg B e 3 To
0 [t} 0,109 0.5 0,225 i.0 0,200 RAY) 0,337
0.3 0,041 0,107 0,445 3.213 0.9t 4,281 1,82 0.347
45 2,073 0,096 375 4,197 0,75 0.262 1.5 0,326
0,8 0,031 0,068 1,180 G140 0,08 0.194 0,72 0,258
TABLE 5
ANEIENES
0,1 0,3 1 2.0
%
0 006 0218 0276 0330
0.3 0.0856 0§96 — —
4.5 00749 0,182 .203 (1278

0,65 0.0599 0,153 0,167 0.238

0.8 - — — 0.249

and the process affects a quite small part of the gas mass when the shocks collapse on the axis of symmetry
when the wave amplitude theoretically tends to infinity. Appropriate estimates are performed in [6]. This cir-
cumstance permits use of a barotropic equation of state for the detonation products in the whole flow domain,

The system of equations describing the detonation product motion is

dpidt + dlpu)/or (v — Dypulr = 0;
du/6t - udu/or — (1/p)dpl/ér = 0, 1
p = A4p%
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where p is the DP density, u is the mass flow rate of the DP, p is the pressure in the DP, r is the radial co-

ordinate, and p is the measure of the space (y =2). The system (1) is integrated numerically for initial and
boundary conditions.

The boundary conditions are as follows: a) on the shell u=p for r =a, the law of incompressible thin
fluid shell motion (ITF shell) is expressed in the form of Newton's law

Mdvidt = pS,

where v is the shell velocity, Sis the area of the shell inner surface, p is the pressure in the shell, and a is
the running inner radius of the shell; b) on the cavity boundary p=0, p =0 for r=ap @if ap>0), and u=0 for
r=ap=0

p .

Here ap is the running radius of the cavity.
The initial conditions are
t=0,p=po,u=0 p=0p,.

The problem is considered in the dimensionless variables

o' = 0'pe u = ulD, p' = p/o,D* t' = tD/ay, r' = ria,.

Integration of the system (1) is performed by a finite-difference method of the predictor —corrector type in a
second-order approximation. A detailed scheme of the calculations has been presented in {6].

Calculations were performed for charges with the cavity dimensions A =0. The coefficient varied be-
tween the limits 0.3; 0.5; 0.8. The calculation was carried out on a BE SM-3M electronic digital computer. The
residual in the energy balance did not exceed 4%,

The pressure and velocity distributions in the DP with respect to the dimensionless coordinate ¢ =r/a at
different times (8 =0.5, A =0.3) are shown in Fig. 2a and b, respectively. The front of the diverging shock is
determined clearly. The radial wave motion is accompanied by a rapid drop in amplitude of the front. The
shock front reflected from the shell is seen well in Fig, 2b (t'=5.1).

It is most convenient to trace the singularities of the acceleration process in the presence of a cavity in
a high-explosive charge by comparing the acceleration laws of a shell of fixed diameter and mass as the cavity
dimension changes. In this case, the quantitities 8 and A are related by the dependence B8 =8,(1—-A %), where
B, is the load coefficient for a solid charge. The appropriate laws of the change in pressure on the shell (8=
2, A =0,and A =0.5) are represented in Fig. 3. The pressure change law at the initial times is identical for
both cases. However, later the arrival of the rarefaction wave, coming on from the inner boundary of the
charge (the time tRy) and the arrival of the shock at the time tgare felt for the charge with the cavity (dashed-
dot line).

The acceleration curves v/D=f(a /a ;) are represented in Fig. 4, where the solid line corresponds to a
cavityless charge, the dashed-dot line, to —~A =0.3, the dashed line to —A =0.5, and the points to —A = 0.8; it is
seen that for large values of A the velocity increment because of the additional impulse of the shock can be
quite significant (for 8 =0.5, A =0.5 the velocity increment because of the effect of the shock is 32%).

A formal criterion for the end of acceleration (shutdown of the computation) isused in the form (Av/ Aa)l/v =
0.05 in computing the final velocity v,. The relative radius ag/a; at the time the shock emerges on the
shell is represented in Table 1.

It is clarified that the values of the final velocities vy/D for fixed 8 are practically independent of A in
some ranges of variation of 8. For very large B the shell reaches its ultimate velocity earlier than the un-
loading wave arriving from the cavity starts to exert influence; for small values (for B8 =0.1, say), the ultimate
shell velocity is reached because of shock reverberations. For medium 8 (0.5 < 8 <2-3) a situation can occur
such that the shock overtakes the shell only once or generally not at all. In this case, a significant part of the
initial high-explosive energy will be concentrated in the shock, which is incapable of transmitting this energy
to the shell. This deduction agrees with the deductions in [5].

Values of the ultimate velocities vo/D=f(B) for a charge without a cavity are given in the lowest line in
Table 2, where design values of the velocities vo/ D obtained by means of the asymptotic Pokrovskii —Garni
(linear DP velocity distribution)

eiD - (112} FIE = B)

430



and Stanyukovich (parabelic DP velocity distribution)
n/D = (12)/2) V'3pI3 +B)

are presented [4].

It follows from Table 2 that the Pokrovskii—Garni formula, based on a linear law, yields more exact
agreement wit:1 the results of the numerical computation. It should be kept in mind that the density distribution
hence differs substantially from the equilibrium. Shown (for 8 = 0.1) in Table 3 is the change in the value of
the ratio pmax/pPmin, Which characterizes the deviation of the distribution from the equilibrium value, It is
hence seen that the equilibrium stage of the process, which can be determined approximately by the condition
pmax/pmin= 1.5, sets in relatively later for larger values of A.

Data showing the change in the final shell velocity for fixed diameters and masses as a function of the
change in cavity size are given in Table 4, where B and A are related by the dependence 8 =8,{1-2a 3, Pre-
sented in Table 5 are values of the velocity (VO/D)1'5 for a fixed acceleration radius (@' =1.5). These results
physically denote cessation of shell aceeleration because of rupture. It is interesting to note that for large
values of B, the influence of the cavity radius on the final velocity (VO/D)1‘5 is negligible (the shell is ™not re-
sponsive" to the presence of a cavity and its size),
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